A partition function algorithm for interacting nucleic acid strands

نویسندگان

  • Hamidreza Chitsaz
  • Raheleh Salari
  • Süleyman Cenk Sahinalp
  • Rolf Backofen
چکیده

UNLABELLED Recent interests, such as RNA interference and antisense RNA regulation, strongly motivate the problem of predicting whether two nucleic acid strands interact. MOTIVATION Regulatory non-coding RNAs (ncRNAs) such as microRNAs play an important role in gene regulation. Studies on both prokaryotic and eukaryotic cells show that such ncRNAs usually bind to their target mRNA to regulate the translation of corresponding genes. The specificity of these interactions depends on the stability of intermolecular and intramolecular base pairing. While methods like deep sequencing allow to discover an ever increasing set of ncRNAs, there are no high-throughput methods available to detect their associated targets. Hence, there is an increasing need for precise computational target prediction. In order to predict base-pairing probability of any two bases in interacting nucleic acids, it is necessary to compute the interaction partition function over the whole ensemble. The partition function is a scalar value from which various thermodynamic quantities can be derived. For example, the equilibrium concentration of each complex nucleic acid species and also the melting temperature of interacting nucleic acids can be calculated based on the partition function of the complex. RESULTS We present a model for analyzing the thermodynamics of two interacting nucleic acid strands considering the most general type of interactions studied in the literature. We also present a corresponding dynamic programming algorithm that computes the partition function over (almost) all physically possible joint secondary structures formed by two interacting nucleic acids in O(n(6)) time. We verify the predictive power of our algorithm by computing (i) the melting temperature for interacting RNA pairs studied in the literature and (ii) the equilibrium concentration for several variants of the OxyS-fhlA complex. In both experiments, our algorithm shows high accuracy and outperforms competitors. AVAILABILITY Software and web server is available at http://compbio.cs.sfu.ca/taverna/pirna/. SUPPLEMENTARY INFORMATION Supplementary data are avaliable at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic Analysis of Interacting Nucleic Acid Strands

Motivated by the analysis of natural and engineered DNA and RNA systems, we present the first algorithm for calculating the partition function of an unpseudoknotted complex of multiple interacting nucleic acid strands. This dynamic program is based on a rigorous extension of secondary structure models to the multistranded case, addressing representation and distinguishability issues that do not...

متن کامل

NUPACK: Analysis and design of nucleic acid systems

UNLABELLED The Nucleic Acid Package (NUPACK) is a growing software suite for the analysis and design of nucleic acid systems. The NUPACK web server (http://www.nupack.org) currently enables: ANALYSIS thermodynamic analysis of dilute solutions of interacting nucleic acid strands. DESIGN sequence design for complexes of nucleic acid strands intended to adopt a target secondary structure at eq...

متن کامل

An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots

Given a nucleic acid sequence, a recent algorithm allows the calculation of the partition function over secondary structure space including a class of physically relevant pseudoknots. Here, we present a method for computing base-pairing probabilities starting from the output of this partition function algorithm. The approach relies on the calculation of recursion probabilities that are computed...

متن کامل

A partition function algorithm for nucleic acid secondary structure including pseudoknots

Nucleic acid secondary structure models usually exclude pseudoknots due to the difficulty of treating these nonnested structures efficiently in structure prediction and partition function algorithms. Here, the standard secondary structure energy model is extended to include the most physically relevant pseudoknots. We describe an O(N(5)) dynamic programming algorithm, where N is the length of t...

متن کامل

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2009